Independent variable selection: Application of independent component analysis to forecasting a stock index
نویسندگان
چکیده
منابع مشابه
Input variable selection using independent component analysis
The problem of input variable selection is well known in the task of modeling real world data. In this paper, we propose a novel model-free algorithm for input variable selection using independent component analysis and higher order cross statistics. Experimental results are given which indicate that the method is capable of giving reliable performance and that it outperforms other approaches w...
متن کاملRank based Least-squares Independent Component Analysis
In this paper, we propose a nonparametric rank-based alternative to the least-squares independent component analysis algorithm developed. The basic idea is to estimate the squared-loss mutual information, which used as the objective function of the algorithm, based on its copula density version. Therefore, no marginal densities have to be estimated. We provide empirical evaluation of th...
متن کاملImproving independent component analysis performances by variable selection
Blind Source Separation (BSS) consists in recovering unobserved signals from observed mixtures of them. In most cases the whole set of mixtures is used for the separation, possibly after a dimension reduction by PCA. This paper aims to show that in many applications the quality of the separation can be improved by first selecting a subset of some mixtures among the available ones, possibly by a...
متن کاملMultivariate streamflow forecasting using independent component analysis
[1] Seasonal forecasting of streamflow provides many benefits to society, by improving our ability to plan and adapt to changing water supplies. A common approach to developing these forecasts is to use statistical methods that link a set of predictors representing climate state as it relates to historical streamflow, and then using this model to project streamflow one or more seasons in advanc...
متن کاملTime Series Forecasting Using Independent Component Analysis
The paper presents a method for multivariate time series forecasting using Independent Component Analysis (ICA), as a preprocessing tool. The idea of this approach is to do the forecasting in the space of independent components (sources), and then to transform back the results to the original time series space. The forecasting can be done separately and with a different method for each componen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Asset Management
سال: 2005
ISSN: 1470-8272,1479-179X
DOI: 10.1057/palgrave.jam.2240179